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Abstract

Botnets are now recognized as one of the most serious

security threats. In contrast to previous malware, botnets

have the characteristic of a command and control (C&C)

channel. Botnets also often use existing common protocols,

e.g., IRC, HTTP, and in protocol-conforming manners.

This makes the detection of botnet C&C a challenging

problem. In this paper, we propose an approach that uses

network-based anomaly detection to identify botnet C&C

channels in a local area network without any prior knowl-

edge of signatures or C&C server addresses. This detection

approach can identify both the C&C servers and infected

hosts in the network. Our approach is based on the observa-

tion that, because of the pre-programmed activities related

to C&C, bots within the same botnet will likely demonstrate

spatial-temporal correlation and similarity. For example,

they engage in coordinated communication, propagation,

and attack and fraudulent activities. Our prototype system,

BotSniffer, can capture this spatial-temporal correlation in

network traffic and utilize statistical algorithms to detect

botnets with theoretical bounds on the false positive and

false negative rates. We evaluated BotSniffer using many

real-world network traces. The results show that BotSniffer

can detect real-world botnets with high accuracy and has a

very low false positive rate.

1 Introduction

Botnets (or, networks of zombies) are recognized as one

of the most serious security threats today. Botnets are

different from other forms of malware such as worms in

that they use command and control (C&C) channels. It is

important to study this botnet characteristic so as to develop

effective countermeasures. First, a botnet C&C channel is

relatively stable and unlikely to change among bots and

their variants. Second, it is the essential mechanism that

allows a “botmaster” (who controls the botnet) to direct

the actions of bots in a botnet. As such, the C&C channel

can be considered the weakest link of a botnet. That is, if

we can take down an active C&C or simply interrupt the

communication to the C&C, the botmaster will not be able

to control his botnet. Moreover, the detection of the C&C

channel will reveal both the C&C servers and the bots in a

monitored network. Therefore, understanding and detecting

the C&Cs has great value in the battle against botnets.

Many existing botnet C&Cs are based on IRC (Internet

Relay Chat) protocol, which provides a centralized com-

mand and control mechanism. The botmaster can interact

with the bots (e.g., issuing commands and receiving re-

sponses) in real-time by using IRC PRIVMSG messages.

This simple IRC-based C&C mechanism has proven to be

highly successful and has been adopted by many botnets.

There are also a few botnets that use the HTTP protocol

for C&C. HTTP-based C&C is still centralized, but the

botmaster does not directly interact with the bots using chat-

like mechanisms. Instead, the bots periodically contact

the C&C server(s) to obtain their commands. Because

of its proven effectiveness and efficiency, we expect that

centralized C&C (e.g., using IRC or HTTP) will still be

widely used by botnets in the near future. In this paper,

we study the problem of detecting centralized botnet C&C

channels using network anomaly detection techniques. In

particular, we focus on the two commonly used botnet C&C

mechanisms, namely, IRC and HTTP based C&C channels.

Our goal is to develop a detection approach that does not

require prior knowledge of a botnet, e.g., signatures of C&C

patterns including the name or IP address of a C&C server.

We leave the problem of detection of P2P botnets (e.g.,

Nugache [19], and Peacomm [14]) as our future work.

Botnet C&C traffic is difficult to detect because: (1)

it follows normal protocol usage and is similar to normal

traffic, (2) the traffic volume is low, (3) there may be very



few bots in the monitored network, and (4) may contain

encrypted communication. However, we observe that the

bots of a botnet demonstrate spatial-temporal correlation

and similarities due to the nature of their pre-programmed

response activities to control commands. This invariant

helps us identify C&C within network traffic. For in-

stance, at a similar time, the bots within a botnet will

execute the same command (e.g., obtain system informa-

tion, scan the network), and report to the C&C server with

the progress/result of the task (and these reports are likely

to be similar in structure and content). Normal network

activities are unlikely to demonstrate such a synchronized or

correlated behavior. Using a sequential hypothesis testing

algorithm, when we observe multiple instances of corre-

lated and similar behaviors, we can conclude that a botnet

is detected.

Our research makes several contributions. First, we

study two typical styles of control used in centralized botnet

C&C. The first is the “push” style, where commands are

pushed or sent to bots. IRC-based C&C is an example

of the push style. The second is the “pull” style, where

commands are pulled or downloaded by bots. HTTP-based

C&C is an example of the pull style. Observing the spatial-

temporal correlation and similarity nature of these botnet

C&Cs, we provide a set of heuristics that distinguish C&C

traffic from normal traffic.

Second, we propose anomaly-based detection algorithms

to identify both IRC and HTTP based C&Cs in a port-

independent manner. The advantages of our algorithms

include: (1) they do not require prior knowledge of C&C

servers or content signatures, (2) they are able to detect

encrypted C&C, (3) they do not require a large number of

bots to be present in the monitored network, and may even

be able to detect a botnet with just a single member in the

monitored network in some cases, (4) they have bounded

false positive and false negative rates, and do not require a

large number of C&C communication packets.

Third, we develop a system, BotSniffer, which is based

on our proposed anomaly detection algorithms and is im-

plemented as several plug-ins for the open-source Snort

[24]. We have evaluated BotSniffer using real-world net-

work traces. The results show that it has high accuracy in

detecting botnet C&Cs with a very low false positive rate.

The rest of the paper is organized as follows. In Section 2

we provide a background on botnet C&C and the motivation

of our botnet detection approach. In Section 3, we describe

the architecture of BotSniffer and describe in detail its

detection algorithms. In Section 4, we report our evalu-

ation of BotSniffer on various datasets. In Section 5, we

discuss possible evasions to BotSniffer, the corresponding

solutions, and future work. We review the related work in

Section 6 and conclude in Section 7.

2 Background and Motivation

In this section, we first use case studies to provide a

background on botnet C&C mechanisms. We then discuss

the intuitions behind our detection algorithms.

2.1 Case Study of Botnet C&C

As shown in Figure 1(a), centralized C&C architecture

can be categorized into “push” or “pull” style, depending

on how a botmaster’s commands reach the bots.

In a push style C&C, the bots are connected to the

C&C server, e.g., IRC server, and wait for commands from

botmaster. The botmaster issues a command in the channel,

and all the bots connected to the channel can receive it

in real-time. That is, in a push style C&C the botmaster

has real-time control over the botnet. IRC-based C&C is

the representative example of push style. Many existing

botnets use IRC, including the most common bot fami-

lies such as Phatbot, Spybot, Sdbot, Rbot/Rxbot, GTBot

[5]. A botmaster sets up an (or a set of) IRC server(s) as

C&C hosts. After a bot is newly infected, it will connect

to the C&C server, join a certain IRC channel and wait

for commands from the botmaster. Commands will be

sent in IRC PRIVMSG messages (like a regular chatting

message) or a TOPIC message. The bots receive com-

mands, understand what the botmaster wants them to do,

and execute and then reply with the results. Figure 1(b)

shows a sample command and control session. The botmas-

ter first authenticates himself using a username/password.

Once the password is accepted, he can issue commands

to obtain some information from the bot. For example,

“.bot.about” gets some basic bot information such as

version. “.sysinfo” obtains the system information of

the bot infected machine, “.scan.start” instructs the

bots to begin scanning for other vulnerable machines. The

bots respond to the commands in pre-programmed fashions.

The botmaster has a rich command library to use [5], which

enables the botmaster to fully control and utilize the in-

fected machines.

In a pull style C&C, the botmaster simply sets the

command in a file at a C&C server (e.g., a HTTP server).

The bots frequently connect back to read the command

file. This style of command and control is relatively loose

in that the botmaster typically does not have real-time

control over the bots because there is a delay between the

time when he “issues” a command and the time when a

bot gets the command. There are several botnets using

HTTP protocol for C&C, for example, Bobax [25], which

is designed mainly to send spams. The bots of this botnet

periodically connect to the C&C server with an URL such as

http://hostname/reg?u=[8-digit-hex-id]

&v=114, and receive the command in a HTTP response.



(a) Two styles of botnet C&C. (b) An IRC-based C&C communication example.

Figure 1. Botnet command and control.

The command is in one of the six types, e.g., prj (send

spams), scn (scan others), upd (update binary). Botnets

can have fairly frequent C&C traffic. For example, in a

CERT report [16], researchers report a Web based bot that

queries for the command file every 5 seconds and then

executes the commands.

2.2 Botnet C&C: Spatial­Temporal Correlation
and Similarity

There are several invariants in botnet C&C regardless of

the push or pull style.

First, bots need to connect to C&C servers in order to

obtain commands. They may either keep a long connection

or frequently connect back. In either case, we can consider

that there is a (virtually) long-lived session of C&C chan-

nel.1

Second, bots need to perform certain tasks and respond

to the received commands. We can define two types of

responses observable in network traffic, namely, message

response and activity response. A typical example of mes-

sage response is IRC-based PRIVMSG reply as shown in

Figure 1(b). When a bot receives a command, it will execute

and reply in the same IRC channel with the execution result

(or status/progress). The activity responses are the network

activities the bots exhibit when they perform the malicious

tasks (e.g., scanning, spamming, binary update) as directed

by the botmaster’s commands. According to [31], about

53% of botnet commands observed in thousands of real-

world IRC-based botnets are scan related (for spreading or

DDoS purpose), about 14.4% are binary download related

(for malware updating purpose). Also, many HTTP-based

1We consider a session live if the TCP connection is live, or within a

certain time window, there is at least one connection to the server.

botnets are mainly used to send spams [25]. Thus, we

will observe these malicious activity responses with a high

probability [8].

If there are multiple bots in the channel to respond to

commands, most of them are likely to respond in a similar

fashion. For example, the bots send similar message or

activity traffic at a similar time window, e.g., sending spam

as in [23]. Thus, we can observe a response crowd of

botnet members responding to a command, as shown in

Figure 2. Such crowd-like behaviors are consistent with all

botnet C&C commands and throughout the life-cycle of a

botnet. On the other hand, for a normal network service

(e.g., an IRC chatting channel), it is unlikely that many

clients consistently respond similarly and at a similar time.

That is, the bots have much stronger (and more consistent)

synchronization and correlation in their responses than nor-

mal (human) users do.

Based on the above observation, our botnet C&C detec-

tion approach is aimed at recognizing the spatial-temporal

correlation and similarities in bot responses. When monitor-

ing network traffic, as the detection system observes multi-

ple crowd-like behaviors, it can declare that the machines in

the crowd are bots of a botnet when the accumulated degree

of synchronization/correlation (and hence the likelihood of

bot traffic) is above a given threshold.

3 BotSniffer: Architecture and Algorithms

Figure 3 shows the architecture of BotSniffer. There

are two main components, i.e., the monitor engine and the

correlation engine. The monitor engine is deployed at the

perimeter of a monitored network. It examines network

traffic, generates connection record of suspicious C&C pro-

tocols, and detects activity response behavior (e.g., scan-
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Figure 3. BotSniffer Architecture.

ning, spamming) and message response behavior (e.g., IRC

PRIVMSG) in the monitored network. The events observed

by the monitor engine are analyzed by the correlation en-

gine. It performs group analysis of spatial-temporal cor-

relation and similarity of activity or message response be-

haviors of the clients that connect to the same IRC or

HTTP server. We implemented the monitor engines as

several preprocessor plug-ins on top of the open-source

system Snort [24], and implemented the correlation engine

in Java. We also implemented a real-time message response

correlation engine (in C), which can be integrated in the

monitor engine. The monitor engines can be distributed

on several networks, and collect information to a central

repository to perform correlation analysis. We describe

each BotSniffer component in the following sections.

3.1 Monitor Engine

3.1.1 Preprocessing

When network traffic enters the BotSniffer monitor engine,

BotSniffer first performs preprocessing to filter out irrele-

vant traffic to reduce the traffic volume. Preprocessing is

not essential to the detection accuracy of BotSniffer but can

improve the efficiency of BotSniffer.

For C&C-like protocol matching, protocols that are un-

likely (or at least not yet) used for C&C communications,



such as ICMP and UDP, are filtered. We can use a (hard)

whitelist to filter out traffic to normal servers (e.g., Google

and Yahoo!) that are less likely to serve as botnet C&C

servers. A soft whitelist is generated for those addresses

declared “normal” in the analysis stage, i.e., those clearly

declared “not botnet”. The difference from a hard list is

that a soft list is dynamically generated, while a soft white

address is valid only for a certain time window, after which

it will be removed from the list.

For activity response detection, BotSniffer can monitor

all local hosts or a “watch list” of local clients that are using

C&C-like protocols. The watch list is dynamically updated

from protocol matchers. The watch list is not required, but

if one is available it can improve the efficiency of BotSnif-

fer because its activity response detection component only

needs to monitor the network behaviors of the local clients

on the list.

3.1.2 C&C-like Protocol Matcher

We need to keep a record on the clients that are using C&C-

like protocols for correlation purpose. Currently, we focus

on two most commonly used protocols in botnet C&C,

namely, IRC and HTTP. We developed port-independent

protocol matchers to find all suspicious IRC and HTTP

traffic. This port-independent property is important because

many botnet C&Cs may not use the regular ports. We

discuss in Section 5 the possible extensions.

IRC and HTTP connections are relatively simple to rec-

ognize. For example, an IRC session begins with con-

nection registration (defined in RFC1459) that usually has

three messages, i.e., PASS, NICK, and USER. We can easily

recognize an IRC connection using light-weight payload

inspection, e.g., only inspecting the first few bytes of the

payload at the beginning of a connection. This is similar

to HiPPIE [1]. HTTP protocol is even easier to recognize

because the first few bytes of a HTTP request have to be

“GET ”, “POST”, or “HEAD”.

3.1.3 Activity/Message Response Detection

For the clients that are involved in IRC or HTTP com-

munications, BotSniffer monitors their network activities

for signs of bot response (message response and activity

response). For message response, BotSniffer monitors the

IRC PRIVMSG messages for further correlation analysis.

For scan activity detection, BotSniffer uses approaches sim-

ilar to SCADE (Statistical sCan Anomaly Detection En-

gine) that we have developed for BotHunter [15]. Specif-

ically, BotSniffer mainly uses two anomaly detection mod-

ules, namely, the abnormally high scan rate and weighted

failed connection rate. BotSniffer uses a new detector for

spam behavior detection, focusing on detecting MX DNS

query (looking for mail servers) and SMTP connections (be-

cause normal clients are unlikely to act as SMTP servers).

We note that more malicious activity response behaviors

can be defined and utilized in BotSniffer. For example,

binary downloading behavior can be detected using the

same approach as the egg detection method in BotHunter

[15].

3.2 Correlation Engine

In the correlation stage, BotSniffer first groups the

clients according to their destination IP and port pair.

That is, clients that connect to the same server will be put

into the same group. BotSniffer then performs a group

analysis of spatial-temporal correlation and similarity. If

BotSniffer detects any suspicious C&C, it will issue botnet

alerts. In the current implementation, BotSniffer uses

the Response-Crowd-Density-Check algorithm (discussed

in Section 3.2.1) for group activity response analysis,

and the Response-Crowd-Homogeneity-Check algorithm

(discussed in Section 3.2.2) for group message response

analysis. Any alarm from either of these two algorithms

will trigger a botnet alert/report.

BotSniffer also has the ability to detect botnet C&C even

when there is only one bot in the monitored network, if

certain conditions are satisfied. This is discussed in Section

3.3.

3.2.1 Response-Crowd-Density-Check Algorithm

The intuition behind this basic algorithm is as follows. For

each time window, we check if there is a dense response

crowd2. Recall that a group is a set of clients that connect to

the same server. Within this group, we look for any message

or activity response behavior. If the fraction of clients with

message/activity behavior within the group is larger than a

threshold (e.g., 50%), then we say these responding clients

form a dense response crowd. We use a binary random vari-

able Yi to denote whether the ith response crowd is dense or

not. Let us denote H1 as the hypothesis “botnet”, H0 as “not

botnet”. We define Pr(Yi|H1) = θ1 and Pr(Yi|H0) = θ0,

i.e., the probability of the ith observed response crowd

is dense when the hypothesis “botnet” is true and false,

respectively. Clearly, for a botnet, the probability of a dense

crowd (θ1) is high because bots are more synchronized than

humans. On the other hand, for a normal (non-botnet) case,

this probability (θ0) is really low. If we observe multiple

response crowds, we can have a high confidence that the

group is very likely part of a botnet or not part of a botnet.

The next question is how many response crowds are

needed in order to make a final decision. To reduce the

2We only check when there is at least one client (within the group) that

has message/activity response behaviors.



number of crowds required, we utilize a SPRT (Sequential

Probability Ration Testing [27]) algorithm, which is also

known as TRW (Threshold Random Walk [17]), to calculate

a comprehensive anomaly score when observing a sequence

of crowds. TRW is a powerful tool in statistics and has

been used in port scan detection [17] and spam laundering

detection [29]. By using this technique, one can reach

a decision within a small number of rounds, and with a

bounded false positive rate and false negative rate.

TRW is essentially a hypothesis testing technique. That

is, we want to calculate the likelihood ratio Λn given a se-

quence of crowds observed Y1, ..., Yn. Assume the crowds

Yis’ are i.i.d. (independent and identically-distributed), we

have

Λn = ln
Pr(Y1, ..., Yn|H1)

Pr(Y1, ..., Yn|H0)
= ln

∏

i Pr(Yi|H1)
∏

i
Pr(Yi|H0)

=
∑

i

ln
Pr(Yi|H1)

Pr(Yi|H0)

According to the TRW algorithm [17, 27], to calculate

this likelihood Λn, we are essentially performing a thresh-

old random walk. The walk starts from the origin (0), goes

up with step length ln θ1

θ0

when Yi = 1, and goes down with

step length ln 1−θ1

1−θ0

when Yi = 0. Let us denote α and β

the user-chosen false positive rate and false negative rate,

respectively. If the random walk goes up and reaches the

threshold B = ln 1−β

α
, this is likely a botnet, and we accept

the hypothesis “botnet”, output an alert, and stop. If it goes

down and hits the threshold A = ln β

1−α
, it is likely not a

botnet. Otherwise, it is pending and we just watch for the

next round of crowd.

There are some possible problems that may affect the

accuracy of this algorithm.

First, it requires observing multiple rounds of response

crowds. If there are only a few response behaviors, the

accuracy of the algorithm may suffer. In practice, we find

that many common commands will have a long lasting

effect on the activities of bots. For example, a single

scan command will cause the bots to scan for a long time,

and a spam-sending “campaign” can last for a long time

[8, 23]. Thus, at least for activity response detection, we

can expect to observe sufficient response behaviors to have

good detection accuracy.

Second, sometimes not all bots in the group will respond

within the similar time window, especially when there is a

relatively loose C&C. One solution is simply to increase the

time window for each round of TRW. Section 3.2.2 presents

an enhanced algorithm that solves this problem.

To conclude, in practice, we find this basic algorithm

works well, especially for activity response correlation. To

further address the possible limitations above, we next pro-

pose an enhanced algorithm.

3.2.2 Response-Crowd-Homogeneity-Check Algorithm

The intuition of this algorithm is that, instead of looking at

the density of response crowd, it is important to consider

the homogeneity of a crowd. A homogeneous crowd means

that within a crowd, most of the members have very similar

responses. For example, the members of a homogeneous

crowd have message response with similar structure and

content, or they have scan activities with similar IP address

distribution and port range. We note that we currently

implement this algorithm only for message response anal-

ysis. But activity response analysis can also utilize this

algorithm, as discussed in Section 5. In this section, we

use message response analysis as an example to describe

the algorithm.

In this enhanced algorithm, Yi denotes whether the ith

crowd is homogeneous or not. We use a clustering technique

to obtain the largest cluster of similar messages in the

crowd, and calculate the ratio of the size of the cluster over

the size of the crowd. If this ratio is greater than a certain

threshold, we say Yi = 1; otherwise Yi = 0.

There are several ways to measure the similarity between

two messages (strings) for clustering. For example, we can

use edit distance (or ED, which is defined as the minimum

number of elementary edit operations needed to transform

one string into another), longest common subsequence, and

DICE coefficient [7]. We require that the similarity metric

take into account the structure and context of messages.

Thus, we choose DICE coefficient (or DICE distance) [7]

as our similarity function. DICE coefficient is based on

n-gram analysis, which uses a sliding window of length n

to extract substrings from the entire string. For a string X

with length l, the number of n-grams is |ngrams(X)| =
l − n + 1. Dice coefficient is defined as the ratio of the

number of n-grams that are shared by two strings over the

total number of n-grams in both strings:

Dice(X, Y ) =
2|ngrams(X) ∩ ngrams(Y )|

|ngrams(X)| + |ngrams(Y )|

We choose n = 2 in our system, i.e., we use bi-gram

analysis. We also use a simple variant of hierarchical

clustering technique. If there are q clients in the crowd3,

we compare each of the
(

q

2

)

unique pairs using DICE, and

calculate the percentage of DICE distances that are greater

than a threshold (i.e., the percentage of similar messages). If

this percentage is above a threshold (e.g., 50%), we say the

ith crowd is homogeneous, and Yi = 1; otherwise, Yi = 0.

Now we need to set θ1 and θ0. These probabilities

should vary with the number of clients (q) in the crowd.

Thus, we denote them θ1(q) and θ0(q), or more generally

3Within a certain time window, if a client sends more than one message,

the messages will be concatenated together.



θ(q). For example, for a homogeneous crowd with 100

clients sending similar messages, its probability of being

part of a botnet should be higher than that of a homogeneous

crowd of 10 clients. This is because with more clients,

it is less likely that by chance they form a homogeneous

crowd. Let us denote p = θ(2) as the basic probability

that two messages are similar. Now we have a crowd of

q clients, there are m =
(

q
2

)

distinct pairs, the probability

of having i similar pairs follows the Binomial distribution,

i.e., Pr(X = i) =
(

m
i

)

pi(1 − p)m−i. Then the probability

of having more than k similar pairs is Pr(X ≥ k) =
∑m

i=k

(

m

i

)

pi(1 − p)m−i. If we pick k = mt where t is

the threshold to decide whether a crowd is homogeneous,

we obtain the probability θ(q) = Pr(X ≥ mt).
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Figure 4. θ(q), the probability of crowd ho­

mogeneity with q responding clients, and

threshold t.

As Figure 4 shows, when there are more than two mes-

sages in the crowd, and we pick p ≥ 0.6, the probability

θ(q) is above the diagonal line, indicating that the value

is larger than p. This suggests that when we use θ1(2) >

0.6, we have θ1(q) > θ1(2). That is, if there are more

messages, we will more likely have a higher probability

of θ1. This confirms our intuition that, if it is a botnet,

then having more clients (messages) is more likely to form

a clustered message group (homogeneous crowd). Also,

from the figure, if we pick a small p ≤ 0.3, we will have

θ(q) < p. This suggests that when choosing θ0(2) < 0.3,

we will have much lower probability θ0(q) when having

multiple messages. Again this confirms the intuition that,

for independent users (not a botnet), it is very unlikely for

them to send similar messages. If there are more users, then

it is less unlikely they will form a homogeneous crowd be-

cause essentially more users will involve more randomness

in the messages. In order to avoid calculating θ(q) all the

time, in practice one can pre-compute these probabilities for

different q values and store the probabilities in a table for

lookup. It may be sufficient to calculate the probabilities

for only a few q values (e.g., q = 3, . . . , 10). For q > 10,

we can conservatively use the probability with q = 10.

For the hypothesis “not botnet”, for a pair of users, the

probability of typing similar messages is very low. Ap-

pendix A provides an analysis of the probability of having

two similar length (size) messages from two users. Essen-

tially, the probability of having two similar length messages

is low, and the probability of having two similar content

is even much lower. In correlation analysis, we pick a

reasonable value (e.g., 0.15) for this probability. Even

though this value is not precise, the only effect is that

the TRW algorithm takes more rounds to make a decision

[17, 27].

In order to make a decision that a crowd is part of a

botnet, the expected number of crowd message response

rounds we need to observe is:

E[N |H1] =
β ln β

1−α
+ (1 − β) ln 1−β

α

θ1 ln θ1

θ0

+ (1 − θ1) ln 1−θ1

1−θ0

where α and β are user-chosen false positive and false

negative probabilities, respectively. Similarly, if the crowd

is not part of a botnet, the expected number of crowd

message response rounds to make a decision is:

E[N |H0] =
(1 − α) ln β

1−α
+ α ln 1−β

α

θ0 ln θ1

θ0

+ (1 − θ0) ln 1−θ1

1−θ0

These numbers are derived according to [27].
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Figure 5. E[N |H1], the expected number of

crowd rounds in case of a botnet (vary θ0(2),
q, α and fix β = 0.01).

Figure 5 illustrates the expected number of walks

(E[N |H1]) (i.e., the number of crowd response rounds

need to observe) when the crowd is part of a botnet. Here

we fix β = 0.01 and vary θ0(2), θ1(2), and α. We can



see that even when we have only two clients, and have a

conservative setting of θ0(2) = 0.2 and θ0(2) = 0.7, it

only takes around 6 walks to reach the decision. When we

increase θ1(2) and decrease θ0(2), we can achieve better

performance, i.e., fewer rounds of walks. If there are more

than two messages (clients), we can have shorter detection

time than the case of having only two messages. It is

obvious that having more clients in the botnet means that

we can make a decision quicker. For example, when q = 4,

θ1(2) = 0.7, and θ0(2) < 0.15, the expected number of

crowd rounds is less than two.

3.3 Single Client C&C Detection Under Certain
Conditions

Group correlation analysis typically requires having

multiple members in a group. In some cases, there is only

one client (e.g., the first infected victim) in the group. We

recommend a distributed deployment of BotSniffer (as

discussed in Section 5) to cover a larger network space, and

thus potentially have more clients in a group. Orthogonally,

we can use techniques that are effective even if there is only

one member in the group, if certain conditions are satisfied.

For IRC communication, a chatting message is usually

broadcast in the channel. That is, every client can see the

messages sent from other clients in the same channel (which

is the normal operation of IRC chatting service). Thus, ev-

ery bot should expect to receive the response messages from

all other clients. This is essentially similar to the case when

we can monitor multiple message responses from multiple

clients in the group. We can use the same TRW algorithm

here. The only difference is that, instead of estimating

the homogeneity of the outgoing message responses from

multiple clients, we estimate the homogeneity of incoming

messages (from different users) to a single client. We also

implemented BotSniffer to perform this analysis because it

complements the algorithms we described in Section 3.2.1

and Section 3.2.2, especially if there is only one client in

the monitored network. Of course, this will not work if

the botmaster uses a modified IRC softwares to disable

broadcasting messages to every clients in the channel.

For HTTP-based C&C, we notice that bots have strong

periodical visiting patterns (to connect back and retrieve

commands). Under this condition, we can include a new

signal encoding and autocorrelation (or self-correlation) ap-

proach in BotSniffer to detect such kind of C&C. Appendix

B describes this approach.

Finally, we note that although these two single client

detection schemes work well on existing botnet C&C, they

are not as robust (evasion-resilient) as the group analysis

algorithms discussed in Section 3.2.1 and Section 3.2.2.

4 Experimental Evaluation

To evaluate the performance of BotSniffer, we tested it

on several network traces.

4.1 Datasets

We have multiple network traces captured from our uni-

versity campus network. Among those, eight are just port

6667 IRC traffic captured in 2005, 2006, and 2007. Each

IRC trace lasts from several days to several months. The

total duration of these traces is about 189 days. They were

labeled as IRC-n (n = 1, . . . , 8). The other five traces are

complete packet captures of all network traffic. Two of them

were collected in 2004, each lasting about ten minutes. The

other three were captured in May and December 2007, each

lasting 1 to 5 hours. We labeled them as All-n (n = 1, . . . , 5).

The primary purpose of using these traces was to test the

false positive rate of BotSniffer. We list the basic statistics

(e.g., size, duration, number of packets) of these traces in

the left part of Table 1.

We also obtained several real-world IRC-based botnet

C&C traces from several different sources. One was cap-

tured at our honeynet in June 2006. This trace contains

about eight hours of traffic (mainly IRC). We labeled it as

B-IRC-G. The IRC channel has broadcast on and we can

observe the messages sent from other bots in the channel.

The trace does not contain the initial traffic, so we did not

have the command. From the replies of the clients, it seems

like a DDoS attack because bots reported current bandwidth

usage and total offered traffic. Besides B-IRC-G, we also

obtained two botnet IRC logs (not network traces) recorded

by an IRC tracker in 2006 [22]. In these logs, there are

two distinct IRC servers, so there are two different botnets.

We labeled them as B-IRC-J-n (n = 1, 2). In each log,

the tracker joined the channel, and sat there watching the

messages. Fortunately, the botmaster here did not disable

the broadcast, thus, all the messages sent by other bots in

the channel were observable.

In addition to these IRC botnet traces, we modified

the source codes of three common bots [5] (Rbot, Spybot,

Sdbot) and created our version of binaries (so that the bots

would only connect to our controlled IRC server). We

set up a virtual network environment using VMware and

launched the modified bots in several Windows XP/2K

virtual machines. We instructed the bots to connect our

controlled C&C server and captured the traces in the virtual

network. For Rbot, we used five Windows XP virtual

machines to generate the trace. For Spybot and Sdbot, we

used four clients. We labeled these three traces as V-Rbot,

V-Spybot, and V-Sdbot, respectively. These traces contain

both bot message responses and activity responses.

We also implemented two botnets with HTTP-based



Trace trace size duration Pkt TCP flows (IRC/Web) servers FP

IRC-1 54MB 171h 189,421 10,530 2,957 0

IRC-2 14MB 433h 33,320 4,061 335 0

IRC-3 516MB 1,626h 2,073,587 4,577 563 6

IRC-4 620MB 673h 4,071,707 24,837 228 3

IRC-5 3MB 30h 19,190 24 17 0

IRC-6 155MB 168h 1,033,318 6,981 85 1

IRC-7 60MB 429h 393,185 717 209 0

IRC-8 707MB 1,010h 2,818,315 28,366 2,454 1

All-1 4.2GB 10m 4,706,803 14,475 1,625 0

All-2 6.2GB 10m 6,769,915 28,359 1,576 0

All-3 7.6GB 1h 16,523,826 331,706 1,717 0

All-4 15GB 1.4h 21,312,841 110,852 2,140 0

All-5 24.5GB 5h 43,625,604 406,112 2,601 0

Table 1. Normal traces statistics (left part) and detection results (right columns).

C&C communication according to the description in

[16, 25]. In the first botnet trace, B-HTTP-I, bots regularly

connects back to the C&C server every five minutes for

commands. We ran four clients in the virtual network

to connect to a HTTP server that acted as a C&C server

providing commands such as scan and spam. The four

clients are interleaved in time to connect to C&C, i.e.,

although they periodically connect, the exact time is

different because they are infected at different time. In the

second trace, B-HTTP-II, we implemented a more stealthy

C&C communication. The bot waits a random amount

of time for the next connection to C&C server. This may

easily evades simple autocorrelation based approach on

single client analysis. We wanted to see how it can affect

the detection performance of group correlation analysis.

These two traces contain bot activity responses.

Table 2 lists some basic statistics of these botnet traces in

the left part. Because B-IRC-J-1/2 are not network traces,

we only report the number of lines (packets) in the logs.

4.2 Experimental Results and Analysis

4.2.1 False Positives and Analysis

We first report our experience on the normal traces. We list

our detection results in the right part of Table 1. Basically,

we list the number of TCP flows (other than TCP flows,

we did not count UDP or other flows) and distinct servers

(only IRC/HTTP servers are counted) in the traces. We

show the number of IP addresses identified as botnet C&C

servers by BotSniffer (i.e., the numbers of false positives)

in the rightmost column. Since these traces were collected

from well administrated networks, we presumed that there

should be no botnet traffic in the traces. We manually

verified the raw alerts generated by BotSniffer’s monitor

engine and also ran BotHunter [15] to confirm that these

are clean traces.

The detection results on the IRC traces are very good.

Since these traces only contain IRC traffic, we only enabled

message response correlation analysis engine. On all eight

traces (around 189 days’ of IRC traffic), BotSniffer only

generated a total of 11 FPs on four of the IRC traces.

We investigated these alerts and found them all real false

positives. There was no false positive (FP) resulted from

group analysis. All were generated due to single client

incoming message response analysis (Section 3.3). The

main reason of causing false positives was that, there is

still a small probability of receiving very similar messages

in a crowd from different users engaging in normal IRC

activity. For example, we noticed that in an IRC channel,

several users (not in the monitored network) were send-

ing “@@@@@@@@...” messages at similar time (and the

messages were broadcast at the channel). This resulted

in several homogeneous message response crowds. Thus,

our TRW algorithm walked to the hypothesis of “botnet”,

resulting a FP. While our TRW algorithm cannot guarantee

no FP, it can provide a pretty good bound of FP. We set

α = 0.005, β = 0.01 in our evaluation and our detection

results confirmed the bounds are satisfied because the false

positive rate was 0.0016 (i.e., 11 out of 6,848 servers),

which is less than α = 0.005).

On the network traces All-n, we enabled both activity

response and message response group analysis engine, and

we did not observe false positives. For All-1 and All-

2, since the duration is relatively short, we set the time

window to one and two minutes, respectively. None of them

caused a false positive, because there were very few random

scanning activities, which did not cause TRW to make a

decision on “botnet”. For All-3, All-4 and All-5, we set the

time window to 5, 10, and 15 minutes, respectively. Again,

we did not observe any false positive. These results showed

that our activity response correlation analysis is relatively



BotTrace trace size duration Pkt TCP flow Detected

B-IRC-G 950k 8h 4,447 189 Yes

B-IRC-J-1 - - 143,431 - Yes

B-IRC-J-2 - - 262,878 - Yes

V-Rbot 26MB 1,267s 347,153 103,425 Yes

V-Spybot 15MB 1,931s 180,822 147,921 Yes

V-Sdbot 66KB 533s 474 14 Yes

B-HTTP-I 6MB 3.6h 65,695 237 Yes

B-HTTP-II 37MB 19h 395,990 790 Yes

Table 2. Botnet traces statistics and detection results.

robust.

4.2.2 Detection Accuracy and Analysis

Next, we ran BotSniffer on the botnet traces in two modes,

stand alone and mixed with normal traces. It successfully

detected all botnet C&C channels in the datasets. That is, it

has a detection rate of 100% in our evaluation.

BotSniffer detected B-IRC-G using only message re-

sponse crowd homogeneity evidences because the trace did

not contain activity responses. Since the bots kept sending

reports of the attack (which were similar in structure and

content) to the C&C server, BotSniffer observed continuous

homogeneous message response crowds.

On two IRC logs, we had to adapt our detection algo-

rithms to take a text line as packet. In trace B-IRC-J-1, there

were a lot of bots sending similar response messages and

these were broadcast in the IRC channel. BotSniffer easily

detected the C&C channel. In trace B-IRC-J-2, although

the messages were less often, there were hundred of bots

responded almost at the same time, and thus, BotSniffer was

able to detect the C&C channels.

On trace V-Rbot, BotSniffer reported botnet alerts be-

cause of the group message response homogeneity detection

and activity response (scanning) density detection. Ac-

tually, even only one client is monitored in the network,

BotSniffer could still detect the botnet C&C because in this

case each client could observe messages from other clients

in the same botnets. Similarly, BtSniffer also successfully

detected C&C channels in traces V-Spybot and V-Sdbot

with both message responses and activity responses.

For traces B-HTTP-I and B-HTTP-II, BotSniffer de-

tected all of the botnets according to activity response group

analysis. The randomization of connection periods did not

cause a problem as long as there were still several clients

performing activity responses at the time window.

We also conducted autocorrelation detection (at single

client level) for HTTP-based C&C detection. The results

and discussions are reported in Appendix B. In short,

the autocorrelation analysis incurred higher false positives

than group analysis, but still provided some interesting

information. It was able to detect HTTP-based C&C with

regular visiting patterns, but failed on B-HTTP-II where the

visiting pattern was randomized.

4.2.3 Summary

In our experiments, BotSniffer successfully detected all

botnets and generated very few false positives. In addition,

its correlation engine generated accurate and concise report

rather than producing alerts of malicious events (e.g., scan-

ning, spamming) as a traditional IDS does. For instance, in

trace All-4, the monitor engine produced over 100 activity

events, none of which is the indication of actual botnets

(e.g., they are false positives), while the correlation engine

did not generate a false positive. In another case, e.g.,

in V-Spybot, there were over 800 scanning activity events

produced by the monitor engine, and the correlation engine

only generated one botnet report (true positive), which was

a great reduction of work for administrators.

In terms of performance comparison with existing

botnet detection systems, we can mainly do a paper-and-

pencil study here because we could not obtain these tools,

except BotHunter [15]. Rishi [13] is a relevant system

but it is signature-based (using known knowledge of

bot nicknames). Thus, if IRC bots simply change their

nickname pattern (for example, many of botnets in our data

do not have regular nickname patterns), Rishi will miss

them. However, such changes will not affect BotSniffer

because it is based on the response behaviors. Another

relevant work is the BBN system [20, 26]. Its detection

approach is based on clustering of some general network-

level traffic features (such as duration, bytes per packet).

Such approach is easy to evade by simply changing the

network flows. It can potentially have more false positives

because it does not consider the temporal synchronization

and correlation of responses. BotHunter [15] is a bot

detection system using IDS (intrusion detection system)

based dialog correlation according to a user-defined bot

infection live-cycle model. It cannot detect bots given only

IRC communication. Its current C&C detection module

relies on known signatures, and thus, it fails on some botnet



traces (e.g., B-IRC-G, B-HTTP-I). The anomaly based IRC

botnet detection system in [6] has the similar problem as

BotHunter. Without considering the group spatial-temporal

correlation and similarity, these systems may also have a

higher false positive rate than BotSniffer.

Although BotSniffer performed well in our evaluation, it

can fail to detect botnets in several cases. We next discuss

these issues and the possible solutions, as well as future

work on improving BotSniffer.

5 Discussion and Future Work

5.1 Possible Evasions and Solutions

Evasion by misusing the whitelist. If a botmaster knows

our hard whitelist, he may attempt to misuse these white

addresses. For example, he can use them as third-party

proxies for C&C purpose to bypass the detection of Bot-

Sniffer. However, as we discussed earlier, a whitelist is

not essential to BotSniffer and mainly serves to improve its

efficiency. Thus, whitelists can be removed to avoid such

evasions. In another evasion case, an adversary controlling

the C&C server may attempt to first behave normally and

trick BotSniffer to decide that the C&C server is a nor-

mal server and put the server address in the soft whitelist.

After that, the adversary begins to use the C&C server to

command the bots to perform real malicious activities. To

defeat this evasion, for each address being added to soft

whitelist, we can keep a random and short timer so that the

address will be removed when the timer expires. Thus, the

adversary’s evasion attempt will not succeed consistently.

Evasion by encryption. Botnets may still use known

protocols (IRC and HTTP) that BotSniffer can recognize,

but the botmasters can encrypt the communication content

to attempt to evade detection. First of all, this may only

mislead message response correlation analysis, but can-

not evade activity response correlation analysis. Second,

we can improve message response correlation analysis to

deal with encrypted traffic. For example, instead of using

simple DICE distance to calculate the similarity of two

messages, we can use information-theoretic metrics that

are relatively resilient to encryption, such as entropy, or

normalized compression distance (NCD [4, 28]), which is

based on Kolmogorov complexity.

Evading protocol matcher. Although botnets tend to

use existing common protocols to build their C&C, they

may use some obscure protocols or even create their own

protocols4. It is worth noting that “push” and “pull” are

4However, a brand new protocol itself is suspicious already. A botnet

could also exploit the implementation vulnerability of protocol matchers.

For example, if an IRC matcher only checks the first ten packets in a

connection to identify the existence of IRC keywords, the botmaster may

have these keywords occur after the first ten packets in order to evade this

the two representative C&C styles. Even when botnets use

other protocols, the spatial-temporal correlation and simi-

larity properties in “push” and “pull” will remain. Thus,

our detection algorithms can still be used after new pro-

tocol matchers are added. We are developing a generic

C&C-like protocol matcher that uses traffic features such

as BPP (bytes per packet), BPS (bytes per second), and

PPS (packet per second) [20, 26] instead of relying on

protocol keywords. This protocol matching approach is

based on the observation that there are generic patterns in

botnet C&C traffic regardless of the protocol being used.

For example, C&C traffic is typically low volume with

a just a few packets in a session and a few bytes in a

packet. Ultimately, to overcome the limitations of protocol

matching and protocol-specific detection techniques, we are

developing a next-generation botnet detection system that is

independent of the protocol and network structure used for

botnet C&C.

Evasion by using very long response delay. A botmaster

may command his bots to wait for a very long time (e.g.,

days or weeks) before performing message or malicious

activity response. In order to detect such bots using Bot-

Sniffer, we have to correlate IRC or HTTP connection

records and activity events within a relatively long time

window. In practice, we can perform correlation analysis

using multiple time windows (e.g., one hour, one day, one

week, etc.). However, we believe that if bots are forced

to use a very long response delay, the utility of the botnet

to botmaster is reduced or limited because the botmaster

can no longer command his bots promptly and reliably. For

example, the bot infected machines may be powered off or

disconnected from the Internet by the human users/owners

during the delay and become unavailable to the botmaster.

We can also use the analysis of activity response crowd

homogeneity (see Section 5.2) to defeat this evasion. For

example, if we can observe over a relatively long time

window that several clients are sending spam messages with

very similar contents, we may conclude that the clients are

part of a botnets.

Evasion by injecting random noise packet, injecting ran-

dom garbage in the packet, or using random response delay.

Injecting random noise packet and/or random garbage in a

packet may affect the analysis of message response crowd

homogeneity. However, it is unlikely to affect the activity

response crowd analysis as long as the bots still need to per-

form the required tasks. Using random message/activity re-

sponse delay may cause problems to the Response-Crowd-

Density-Check algorithm because there may not be suffi-

cient number of responses seen within a time window for

one round of TRW. However, the botmaster may lose the

reliability in controlling and coordinating the bots promptly

if random response delay is used. We can use a larger time

protocol matcher.



window to capture more responses. Similar to evasion by

long response delay discussed above, for evasion by random

response delay, a better solution is to use the analysis of

activity response crowd homogeneity (see Section 5.2).

In summary, although it is not perfect, BotSniffer greatly

enhances and complements the capabilities of existing bot-

net detection approaches. Further research is needed to

improve its effectiveness against the more advanced and

evasive botnets.

5.2 Improvements to BotSniffer

Activity response crowd homogeneity check. We have al-

ready discussed homogeneity analysis of message response

crowd in Section 3.2.2. We can perform similar check on

the homogeneity of activity response crowd. For instance,

for scanning activity, we consider two scans to be similar

if they have similar distribution or entropy of the target IP

addresses and similar ports. A similarity function of two

spam activities can be based on the number of common mail

servers being used, the number of spam messages being

sent, and the similarity of spam structure and content (e.g.,

the URLs in the messages). A similarity function of two bi-

nary downloading activities can be based on the byte value

distribution or entropy of the binary or binary string dis-

tance. By including Response-Crowd-Homogeneity-Check

on activity responses, in addition to the similar check on

message responses, we can improve the detection accuracy

of BotSniffer and its resilience to evasion.

Combine more features in analysis. As with other de-

tection problems, including more features can improve the

accuracy of a botnet detection algorithm. For example,

we can check whether there are any user-initiated queries,

e.g., WHO, WHOIS, LIST, and NAMES messages, in an IRC

channel. The intuition is that a bot is unlikely to use these

commands like a real user. To detect an IRC channel that

disables broadcast (as in the more recent botnets), we can

consider the message exchange ratio, defined as mi

mo
, i.e.,

the ration between the number of incoming PRIVMSGmes-

sages (mi) and the number of outgoingPRIVMSGmessages

(mo). The intuition is that for a normal (broadcasting) IRC

channel, most likely there are multiple users/clients in the

chatting channel, and a user usually receives more messages

(from all other users) than he sends. On the other hand,

in the botnet case with broadcast disabled, the number of

incoming messages can be close to the number of outgoing

messages because a client cannot see/receive the messages

sent by other clients. The number of incoming messages

can also be smaller than the number of outgoing messages,

for example, when there are several packets/responses from

a bot corresponding to one botmaster command, or when

the botmaster is not currently on-line sending commands. In

addition, we can consider other group similarity measures

on traffic features, e.g., duration, bytes per second, and

packets per second.

Distributed deployment on Internet. Ideally, BotSniffer

deployment should be scalable, i.e., it should be able to

handle a large volume of traffic and cover a large range

of network addresses. We envision that BotSniffer can be

distributed in that many monitor sensors can be deployed in

distributed networks and report to a central repository that

also performs correlation and similarity analysis.

6 Related Work

Much of the research on botnets has been on gaining a

basic understanding of the botnet threats. Honeypot tech-

niques are widely used to collect and analyze bots [3, 22,

30]. Freiling et al. [30] used honeypots to study the problem

of botnets. Nepenthes [3] is a honeypot tool for auto-

matically harvesting malware samples directly from the

Internet. Rajab et al. [22] employed a longitudinal multi-

faceted approach to collect bots, track botnets, and provided

an in-depth study of botnet activities. Cooke et al. [9]

studied several basic dynamics of botnets. Dagon et al. [10]

studied the global diurnal behavior of botnets using DNS

based detection and sink-holing technique. Barford and

Yegneswaran [5] investigated the internals of bot instances

to examine the structural similarities, defense mechanisms,

and command and control capabilities of the major bot

families. Collins et al. [8] observed a relationship between

botnets and scanning/spamming activities.

There are also several very recent efforts on botnet de-

tection. Binkley and Singh [6] proposed to combine IRC

statistics and TCP work weight for detection of IRC-based

botnets. Rishi [13] is a signature-based IRC botnet detec-

tion system. Livadas et al. [20, 26] proposed a machine

learning based approach for botnet detection using some

general network-level traffic features. Karasaridis et al. [18]

studied network flow level detection of IRC botnet con-

trollers for backbone networks. SpamTracker[23] is a spam

filtering system using behavioral blacklisting to classify

email senders based on their sending behavior rather than

their identities. BotSniffer is different from all of the above

work. The novel idea in BotSniffer is to detect spatial-

temporal correlation and similarity patterns in network traf-

fic that are resulted from pre-programmed activities related

to botnet C&C. BotSniffer works for both IRC and HTTP

based botnets, and can be easily extended to include other

protocols; whereas previous systems mainly dealt with IRC

based botnets. Another recent work, BotHunter [15], is a

botnet detection system that uses IDS-driven dialog corre-

lation according to a user-defined bot infection live-cycle

model. Different from BotHunter’s “vertical” correlation

angle, which examines the behavior history of each distinct

host independently, BotSniffer provides a “horizontal” cor-



relation analysis across several hosts. In addition, BotSnif-

fer can be a very useful component, i.e., an anomaly based

C&C detector, for BotHunter.

7 Conclusion

Botnet detection is a relatively new and a very chal-

lenging research area. In this paper, we presented Bot-

Sniffer, a network anomaly based botnet detection system

that explores the spatial-temporal correlation and similarity

properties of botnet command and control activities. Our

detection approach is based on the intuition that since bots

of the same botnet run the same bot program, they are

likely to respond to the botmaster’s commands and conduct

attack/fraudulent activities in a similar fashion. BotSniffer

employs several correlation and similarity analysis algo-

rithms to examine network traffic, identifies the crowd of

hosts that exhibit very strong synchronization/correlation in

their responses/activities as bots of the same botnet. We

reported experimental evaluation of BotSniffer on many

real-world network traces, and showed that it has very

promising detection accuracy with very low false positive

rate. Our ongoing work involves improving the detection

accuracy of BotSniffer and its resilience to evasion, and

performing more evaluation and deploying BotSniffer in

the real-world. We are also developing a next-generation

detection system that is independent of the protocol and

network structure used for botnet C&C.
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A Analysis of the Similarity Probability of

Typing Similar Length Messages

In this section, we show the probability of typing two
similar length (size) messages from two chatting users. Let
us use the common assumption of Poisson distribution for
the length of messages typed by the user [12] at duration

T, P (X = i) = e−λ1T (λ1T )i

i! . Then for two independent
users, their joint distribution

P (X = i, Y = j) = P (x = i)P (y = j) = e
−λ1T−λ2T (λ1T )i(λ1T )j

i!j!

And

P (|X − Y | <= δ)
=

∑

i P (i, i) +
∑

i P (i, i + 1)
+... +

∑

i P (i, i + δ)
+

∑

i P (i, i − 1) + ... +
∑

i P (i, i − δ)

(1)

For example,

P (|X − Y | <= 1)
=

∑

i P (i, i) +
∑

i P (i, i + 1) +
∑

i P (i, i − 1)

= e−λ1T−λ2T
∑

i
(λ1T )i(λ2T )i

(i!)2 (1 + λ2T
i+1 + i

λ2T
)

(2)

Figure 6 illustrates the probability of having two sim-

ilar length messages from two different users at different

settings of λT , the average length of message a user types

during T . Figures 6(a) and (b) show the probabilities when

two messages have length difference within one character

and two characters, respectively. In general, this probability

will decrease quickly if the difference between λ1 and λ2

increases. Even if two users have the same λ, the probability

will also decrease (but slower than the previous case) with

the increase of λ. Since two independent users are likely

to have different λ values, the probability of typing similar

length messages for them is low. For example, if λ1T = 5
and λ2T = 10, the probability P (|X − Y | <= 2) is only

around 0.24. If λ1T = 5 and λ2T = 20, this probability

will further decrease to 0.0044.

B HTTP-Based C&C AutoCorrelation Anal-

ysis (for a Single Client)

HTTP-based C&C does not require that the botmaster

directly interact with the bots. That is, the botmaster does

not need to be on-line all the time to instruct the bots.

Instead, the bots only need to periodically check the com-

mand file (or perform a set of inquiries) that is prepared and

maintained by the botmaster. We can identify such kind of

C&C by detecting a repeating and regular visiting pattern.

A simple approach is to count the variance of inter-arrival

time of outgoing packets. If the variance is small (i.e., close

to zero), we have a repeating and regular pattern. However,

this method is only suitable for the simplest case (i.e.,

with only one request per period). It cannot handle more

complex scenarios, e.g., when there are a set of queries per

period, or there are some noise packets sent (e.g., users

randomly visit the target by chance). In this section, we

introduce a new signal encoding and autocorrelation (or

self-correlation) approach that is able to handle the general

and complex scenarios.

B.1 Autocorrelation Analysis

A packet stream from a client to a target service

(identified by < ClientIP, ServerIP, ServerPort >)

is ~P = {P1, P2, ..., Pi, ...}, and each packet Pi can be

denoted as < ti, si >5, where ti is the timestamp when

the packet is sent, si is the packet payload size with a

direction sign (positive or negative, positive ”+” indicates

outgoing packet, negative ”-” indicates incoming packet).

Further more, we use a time window to abstract packet

stream within the window into a four-element vector

< OutPkt#, OutPktTotalSize, InPkt#, InPktTotalSize >, we

can get a time series signal Xi for every client i. To

illustrate the encoding scheme, we show an example.

Assume the client is silent in the first time window, and

in the second time window the client sends one packet

with payload size 70 and received two packets with a

total payload size of 100, and then becomes silent again

in the third time window. We can encode this series as

X = [0, 0, 0, 0, 1, 70,−2,−100, 0, 0, 0, 0].

Before introducing autocorrelation, we first introduce the

concept of correlation. In probability theory and statistics

[12], correlation, also called correlation coefficient, is an

indication of the strength of a linear relationship between

two random variables. For any pair of two random variables

Xi and Xj , the covariance is defined as cov(Xi, Xj) =
E[(Xi−µi)(Xj−µj)] where µi and µj are the means of Xi

and Xj , respectively. The covariance measures how much

two random variables vary from each other. It is symmet-

rical, i.e., cov(Xi, Xj) = cov(Xj , Xi). The magnitude of

a covariance also depends on the standard deviation. Thus,

we can scale covariance to obtain a normalized correlation,

i.e., correlation coefficient, which serves as a more direct

indication of how two components co-vary. Denote σ as the

standard deviations (σ2 = E(X−µ)2 = E(X2)−E2(X)),
we can calculate the correlation coefficient of two random

variables Xi, Xj as:

ρi,j =
cov(Xi, Xj)

σiσj

=

∑

[(Xi − µi)(Xj − µj)]
√

∑

(Xi − µi)2
√

∑

(Xj − µj)2

5For simplicity, here we ignore the detailed payload content, and ignore

those packets without actual payload such as an ACK packet.
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Figure 6. Probability of two independent users typing similar length of messages.

We know −1 ≤ ρ ≤ 1. If there is an increasing linear

relationship (e.g., [1 2 3 4] with [2 4 6 8]), ρ = 1; if there

is a deceasing linear relation (e.g., [1 2 3 4] with [8 6 4 2]),

ρ = −1. Having coefficient that is closer to either -1 or 1

means that the correlation between the variables is stronger.

Correlation inherits the symmetry property of covariance.

A random variable should co-vary perfectly with itself. If

Xi and Xj are independent, their correlation is 0.

In signal processing [21], to measure the similarity of

two signals, we usually use cross-covariance, or more com-

monly called cross-correlation. This is a function of the

relative time between the signals, sometimes also called the

sliding dot product, which has many applications in pattern

recognition. Assume two real valued functions f and g

only differ by a shift along the x-axis. We can calculate

the cross-correlation to find out how much one function f

must be shifted along the x-axis in order to be identical to

another function g. We slide the f function along the x-

axis, and calculate a dot product for each possible amount of

sliding. The value of cross-correlation is maximized when

the two functions match at certain sliding. The reason for

this is that when lumps (positives areas) are aligned, they

contribute to making the dot product larger. Also, when

the troughs (negative areas) align, they also make a positive

contribution to the dot product. In the time series, the

sliding is a time shift, or lag d. For two discrete time series

Xi(t) and Xj(t), the cross correlation at lag d is calculated

as

R(d) =

∑

t[(Xi(t) − µi)(Xj(t − d) − µj)]
√

∑

t(Xi(t) − µi)2
√

∑

t(Xj(t − d) − µj)2

For a single time serial signal, autocorrelation (or self-

correlation) is a mathematical tool used frequently for an-

alyzing some spatial-time property in signal processing.

Intuitively, it is a measure of how well a signal matches a

time-shifted version of itself, as a function of the amount of

time shift (lag). More precisely, it is the cross-correlation

of a signal with itself. Thus, autocorrelation is useful for

finding repeating patterns in a signal, such as determining

the presence of a periodic signal which may be buried under

noise, or identifying the missing fundamental frequency in

a signal. The autocorrelation at lag d of a series signal X is

normally calculated as

R(d) =

∑

t[(X(t) − µ)(X(t − d) − µ)]
∑

(X(t) − µ)2

If we calculate autocorrelations for all lags, we get a

resulting autocorrelation series. The autocorrelation series

can be computed directly as above. Or we can use Fourier

transform by transforming the series into the frequency do-

main. This method of computing the autocorrelation series

is particularly useful for long series where the efficiency of

the FFT (Fast Fourier transform) can significantly reduce

the computation time.

To illustrate the idea, we show an example. In the left

part of Figure 7, the signal encodes a packet stream taken

from a normal HTTP session (as captured in a real network

trace). We can see that there are very few peak points

(except at lag 0) in autocorrelation series. The right part of

Figure 7 shows a HTTP based bot periodically connects to a

C&C server. In its autocorrelation serials, we observe many

peak points (large correlation coefficient). This means the

right signal has a strong autocorrelation.

We use autocorrelation to identify whether the HTTP

visiting activity of a client has repeating patterns, i.g., the

signal is periodical or not. The algorithm evaluates the

strength of autocorrelation based on the number of the peak

points, and outputs whether a HTTP client is sufficiently

autocorrelated.
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Figure 7. AutoCorrelation series of two example HTTP signals. The signal in the left is taken from a

real HTTP (normal) trace. The right signal is from a HTTP bot trace.

Trace trace size duration Pkt TCP flow HTTP server FP

All-1 4.2GB 10m 4,706,803 14,475 1,625 0

All-2 6.2GB 10m 6,769,915 28,359 1,576 0

All-3 7.6GB 1h 16,523,826 331,706 1,717 19

All-4 15GB 1.4h 21,312,841 110,852 2,140 11

HTTP-1 14.7GB 2.9h 16,678,921 105,698 3,432 22

Table 3. Normal HTTP traces: autocorrelation detection results.

B.2 Evaluation

Table 3 lists the false positives using autocorrelation

analysis on normal HTTP traces (we included a new HTTP-

only trace, labeled as HTTP-1). For traces All-1 and All-2,

there was no alert. This is probably because the duration of

the trace is relatively short (around 10 minutes). We then

tested on traces All-3, All-4, and HTTP-1, the duration of

which is a few hours. Autocorrelation analysis identified

19 suspicious Web sites for All-3, 11 for All-4, and 22 for

HTTP-1. When we investigated the reason of generating

these alerts, we found that most of the false positives could

be excluded, as discussed below.

The HTTP servers that contributed to the false positives

generally have two characteristics: (1) the number of flows

between the server and clients are small, e.g., one or two

flows; and (2) the flows have high periodical patterns. The

first characteristic implies that the HTTP server is not pop-

ular and the number of clients is small, and as a result,

our system fails to uncover the group characteristics. The

second characteristic implies that it is not human but some

automatic programs making the requests to the servers be-

cause human-driven process will very unlikely generate au-

tocorrelated packet signal. These programs can be classified

to be either benign or malicious. As examples of benign

programs, Gmail session can periodically check email up-

date through HTTP POST, and some browser toolbars may

also generate periodical patterns. After investigating the

trace, we did find such cases. For example, two clients pe-

riodically connected to a Web site (www.nextbus.com)

to get real-time information about bus schedule. Although

benign programs can generate false positives, we can easily

whitelist them once they are observed. Spyware, as an

example of malicious programs, may also “phone home” to

send user information back. The “false positives” generated

by this type of spyware are not entirely “false” because such



BotTrace trace size duration Pkt TCP flow Detected

B-HTTP-1 44KB 1,715s 403 31 Yes

B-HTTP-2 275KB 1,521s 2,683 256 Yes

B-HTTP-3 103KB 7,961s 796 29 Yes

B-HTTP-4 3.4MB 40,612s 35,331 3,148 Yes

B-HTTP-I 6MB 3.6h 65,695 237 Yes

B-HTTP-II 37MB 19h 395,990 790 No

Table 4. HTTP botnet traces statistics and detection results.

information should be valuable to security administrators.

To evaluate the detection performance, we also imple-

mented four HTTP bots with Web-based C&C communica-

tion according to the descriptions in [2, 11, 16, 25], using

different periods. Thus, we generated four traces, labeled as

B-HTTP-n (n = 1, . . . , 4), all containing one HTTP bot and

one server. B-HTTP-1 mimics Bobax bot, and we set peri-

odic time as 1 minute. B-HTTP-2 mimics the bot described

in [16], which checks back every 5 seconds. B-HTTP-3

mimics the proxy botnet as in [2], with a time period of 10

minutes. B-HTTP-4 mimics Clickbot as described in [11],

which connects back and queries a set of messages.

Table 4 lists the detection results using autocorrelation

analysis on these HTTP-based botnet traces. The botnets in

B-HTTP-n (n = 1, . . . , 4) were all detected. Furthermore,

to test the robustness of HTTP autocorrelation against some

possible (small) random delays or random noises (e.g., ir-

relevant packets to the server), we generated two other sets

of traces (Set-2, Set-3) for B-HTTP-n (n = 1, . . . , 4). In Set-

2, we intentionally introduced a short random delay (±10%
of the period) on every packet sent. In Set-3, in addition

to the random delay, we further injected some random

noises, e.g., an additional random packet (e.g., with random

size) to the server within every 10 periods. The results on

these two addition sets again confirmed that autocorrelation

is relatively robust against these small random delay and

random noise. For B-HTTP-I/II traces (used in Section 4

with multiple clients), autocorrelation analysis successfully

detected botnet C&C in B-HTTP-I, but failed on B-HTTP-

II because the visiting pattern is randomized (i.e., no longer

periodical).


